

Custom manufacturer of poly bags & film

Micro DefenS

Antimicrobial Film

Micro DefenS

Introducing a cutting edge new alternative to flexible packaging.

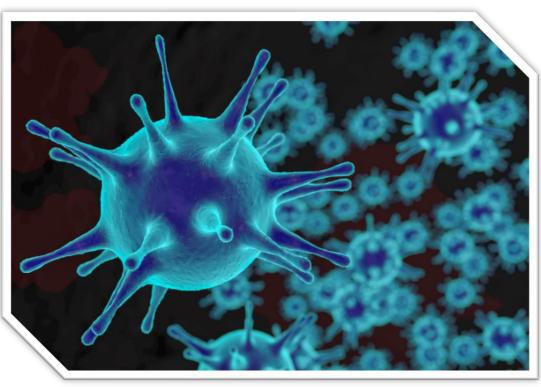
Micro DefenS is a flexible polyethylene film with antimicrobial properties. The film is designed to inhibit the growth of bacterial AND fungal microbes like e. Coli, s. aureus, MRSA & more.

Microbials defined*

Adjective

1. Relating to or characteristic of a microorganism, especially a bacterium causing disease or fermentation.

2. "Skin is a major source of microbial contamination during a surgical procedure."


*https://en.oxforddictionaries.com/definition/microbial

About Antimicrobial

Antimicrobial properties inhibit the growth, on the treated area, of disease, odor and stain-causing:

- Bacteria
- Molds
- Mildews
- Fungi

Why Use Antimicrobials?

- Improve safety from pathogenic micro organisms
- Reduces the risk of food contamination from surface contact
- Address consumer concerns
- Enhance product freshness
- Eliminate undesired odors
- Control unsightly stains

Previously Existing Antimicrobial Technology

Quantitative Antimicrobial Assessment: ISO 22196:2011

Amount of growth after 24 hours

Sample Description	Initial Microorganism Count	Microorganisms Recovered
Untreated ABS	225,000	310,000
MicroBlok Treated ABS	225,000	< 50
Untreated Polystyrene	1,650,000	3,950,000
MicroBlok Treated Polystyrene	1,650,000	< 50
Untreated TPU	225,000	2,900,000
MicroBlok Treated TPU	225,000	< 50

Testing Protocol ISO 22196:2007. A bacterial inoculum is placed in microdroplet form on the surface of polymer chip samples. Each sample is placed in its own container with a lid. A sterile film is placed on top over the inoculum to encourage good contact. After 24 hours of incubation at 37°C, 50 mL of Letheen broth was added to the container and shook. Sample test data based on custom-formulated materials for specific resins listed.

Now Introducing:

Polyethylene Films with Antimicrobial technology!

Polyethylene Flexible Films with Antimicrobial technology!

PE Films - Efficacy Analysis/Bacteria

Quantitit	ive Assessment of Activity – ISO 2219 E.coli	96:2011		
For (Great American Packaging Specific Ba	igs		
Concentration of starting inoculum 1.92x1		1.92x10 ⁵		
Polyethylene Bag				
Sample Description	# of Bacteria Recovered	% Reduction		
Inside	<2.00 X 10 ¹	>99.9%		
Outside	<2.00 X 10 ¹	>99.9%		
Inoculum Control	9.16 X 10 ⁶			

Quantitit	ive Assessment of Activity – ISO 2219	96:2011		
	S. aureus			
For (Great American Packaging Specific Ba	gs		
Concentration of starting inoculum		2.64x10 ⁵		
Polyethylene Bag				
Sample Description	# of Bacteria Recovered	% Reduction		
Inside	<2.00 X 10 ¹	>99.9%		
Outside	<2.00 X 10 ¹	>99.9%		
	•			
Inoculum Control	7.32 X 105			

Quantititive Assessment of Activity - ISO 22196:2011					
		MRSA			
Concentration of starting inoculum				1.63x10 ⁵	
	Sample Description	# of Bacteria		R =	%
	Sample Description	recovered	Log Value	[log(B/C)]	Reduction
1	PE control no antimicrobial	1.17 x 106	6.1		
2	Sample 1 PE bag with MicroBlok Z	<2.00 x 10 ¹	<1.3	>4.8	>99.9%
3	Sample 2 PE bag with MicroBlok Z	<2.00 x 10 ¹	<1.3	>4.8	>99.9%
	Inoculum control	3.40 x 10 ⁶	6.5		

PE Films - Antifungal Assessment

AATCC Test Method 30-2013 Asperigillus niger (ATCC #6275)

**The width of the growth-free zone surrounding the test specimen

*Percentage of specimen free of growth

Sample Description	Growth Free Zone (MM)*	Surface Inhibition (%) **
Inside	0	100
Outside	0	100

<u>Comments</u>: In the AATCC test method 39, both sides of the same remained free of

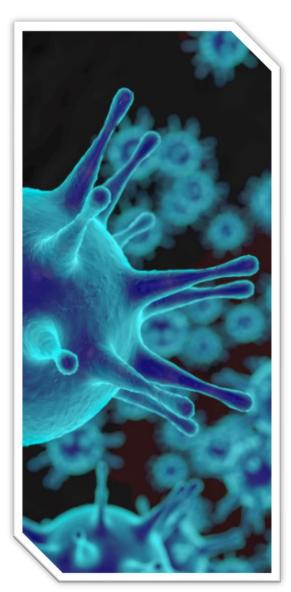
growth from the A.niger test organism

Antimicrobial

Antimicrobials regulated by the EPA under FIFRA

- Federal Insecticide, Fungicide, and Rodenticide Act
- All antimicrobial technology used in MicroBlok is registered with the EPA
 - RoHs and REACH-complaint solutions

Antibacterial Resistance


•

The increased risk of antibiotic resistance in hospital and medical facilities is expected to continue.

Antimicrobial films provide a stop-gap to help reduce the spread of many antibiotic-resistant bacteria like S. aureus and MRSA.

developed antibiotic resistance.			
Mechanism	Resistant organism	Antibiotic affected by bacterial resistance	
Antimicrobial inactivation			
β-lactamase	 Staphylococcus aureus Haemophilus influenzae Enterobacteriaceae* 	PenicillinsCephalosporins	
Aminoglycoside- inactivating enzymes	Enterobacteriaceae	GentamicinTobramycin	
Altered target site			
Altered penicillin- binding proteins	 Streptococcus pneumoniae Methicillin-resistant S. aureus 	PenicillinMethicillinCloxacillin	
Altered DNA gyrase or topoisomerase	 S. pneumoniae Enterobacteriaceae Pseudomonas aeruginosa 	CiprofloxacinLevofloxacinMoxifloxacin	

Table 1: Mechanisms of antibiotic resistance and examples of bacteria that have

*Table 1: NCBI National Library of Medicine, National Institute of Health Journal List <u>CMAJ v.180(4); 2009 Feb 17</u> PMC2638041

Unique Properties

A Competitive Edge for you

- Cutting Edge technology unique to flexible films blends (vs coatings).
- Opportunity to enter into new or less penetrated markets
- Limitless styles and sizes in PE bags and film
- Plain and printed PE bags and film

For more information, contact one of our Packaging Consultants:

Great American Packaging, LLC

Ph. 323.582.2247 | Email: orders@greatampack.com | www.GreatAmPack.com

